微量元素锌在对抗新型冠状病毒肺炎中的作用研究进展 - 优先发表 - 肥料与健康
微量元素锌在对抗新型冠状病毒肺炎中的作用研究进展
Research Progress on the Role of Trace Element Zinc in Fight Against Corona Virus Disease 2019
, , , , ,


摘要:

新型冠状病毒肺炎(COVID-19)是由新型冠状病毒SARS-CoV-2引起的疾病, 在全球范围内大面积传播, 严重威胁公众的健康。研究发现: COVID-19易感人群与缺锌人群存在显著的重合性; 从机制上, 微量元素锌具有抗病毒、调节免疫、抗炎等生理功能, 存在潜在的预防或治疗COVID-19的作用。临床试验结果证实: 单独使用锌补充剂对COVID-19的治疗可能无效, 但锌结合羟氯喹(HCQ)、阿奇霉素(AZM)的三联疗法对COVID-19的早期治疗是有效的。值得尝试开展锌与其他COVID-19治疗试剂的联合给药治疗的临床研究。进一步开展锌盐阻断多蛋白加工和抑制病毒复制活性的试验研究, 可为阐明锌盐在对抗COVID-19中的潜在作用提供机制参考。

关键词:

Abstract:

Corona virus disease 2019 (COVID-19) is a disease caused by the new coronavirus SARS-CoV-2, which spreads widely around the world and seriously threatens public health. There is a significant overlap between the susceptible population of COVID-19 and the zinc-deficient population. In terms of mechanism, the trace element zinc has physiological functions such as antiviral, immune regulation, and anti-inflammatory, and has a potential role in preventing or treating COVID-19. The clinical trial results confirm that zinc supplementation alone may be ineffective for the treatment of COVID-19, but the triple therapy of zinc combined with hydroxychloroquine (HCQ) and azithromycin (AZM) is effective for the early treatment of COVID-19. It is worth trying to carry out a clinical study on the combined administration of zinc and other COVID-19 therapeutic agents. Further experimental studies on the activity of zinc salts to block polyprotein processing and inhibit viral replication can provide a mechanism reference for elucidating the potential role of zinc salts in combating COVID-19.

Keyword:

ckwx 参考文献

1

WORLD HEALTH ORGANIZATION. Weekly epidemiological update on COVID-19-24 August 2022 [EB/OL]. [2022-09-25]. https://www.who.int/publications/m/item/weeklyepidemiological-update-on-covid-19-24-august-2022.


2

CHEN Y, MA Z F, YU D H, et al. Geographicaldistributionof trace elements (selenium, zinc, iron, copper) and case fatality rate of COVID-19: a national analysis across conterminous USA [J/OL]. Environmental Geochemistry and Health, 2022, [2022-09-25]. https://doi.org/10.1007/s10653-022-01204-0.


3

GONÇALVES T J M, GONÇALVES S E A B, GUARNIERI A, et al. Association between low zinc levels and severity of acute respiratory distress syndrome by new coronavirus SARSCoV-2 [J]. Nutrition in Clinical Practice, 2021, 36 (1): 186-191. doi:10.1002/ncp.10612


4

WESSELS I, ROLLES B, RINK L. The potential impact of zinc supplementation on COVID-19 pathogenesis[J]. Frontiers in Immunology, 2020, 11: 1712. doi:10.3389/fimmu.2020.01712


5

MOSSINK J P. Zinc as nutritional intervention and prevention measure for COVID-19 disease[J]. BMJ Nutrition Prevention and Health, 2020, 3(1): 111-117. doi:10.1136/bmjnph-2020-000095


6

YASUI Y, YASUI H, SUZUKI K, et al. Analysis of the predictive factors for a critical illness of COVID-19 during treatment-relationship between serum zinc level and critical illness of COVID-19 [J]. International Journal of Infectious Diseases, 2020, 100: 230-236. doi:10.1016/j.ijid.2020.09.008


7

DARMA A, ATHIYYAH A F, RANUH R G, et al. Zinc supplementation effect on the bronchial cilia length, the number of cilia, and the number of intact bronchial cell in zinc deficiency rats[J]. The Indonesian Biomedical Journal, 2020, 12(1): 78-84. doi:10.18585/inabj.v12i1.998


8

ROSCIOLI E, JERSMANN H P, LESTER S, et al. Zinc deficiency as a codeterminant for airway epithelial barrier dysfunction in an ex vivo model of COPD [J]. International Journal of Chronic Obstructive Pulmonary Disease, 2017, 12: 3503-3510. doi:10.2147/COPD.S149589


9

CARLUCCI P M, AHUJA T, PETRILLI C, et al. Hydroxychloroquine and azithromycin plus zinc vs hydroxychloroquine and azithromycin alone: outcomes in hospitalized COVID-19 patients [J/OL]. Journal of Medical Microbiology, 2020, [2022-09-25]. https://www.medrxiv.org/content/10.1101/2020.05.02.20080036v1.


10

BOUDREAULT F, PINILLA-VERA M, ENGLERT J A, et al. Zinc deficiency primes the lung for ventilator-induced injury[J]. JCI Insight, 2017, 2(11): e86507. doi:10.1172/jci.insight.86507


11

GOUDA A S, ADBELRUHMAN F G, ELBENDARY R N, et al. A comprehensive insight into the role of zinc deficiency in the renin-angiotensin and kinin-kallikrein system dysfunctions in COVID-19 patients [J]. Saudi Journal of Biological Sciences, 2021, 28(6): 3540-3547. doi:10.1016/j.sjbs.2021.03.027


12

SHARMA P, REDDY P K, KUMAR B. Trace element zinc, a nature′s gift to fight unprecedented global pandemic COVID-19[J]. Biological Trace Element Research, 2021, 199 (9): 3213-3221. doi:10.1007/s12011-020-02462-8


13

RAZZAQUE M S. COVID-19 pandemic: can zinc supplementation provide an additional shield against the infection [J]. Computational and Structural Biotechnology Journal, 2021, 19: 1371-1378. doi:10.1016/j.csbj.2021.02.015


14

MAYOR-IBARGUREN A, BUSCA-ARENZANA C, ROBLESMARHUENDA Á. A hypothesis for the possible role of zinc in the immunological pathways related to COVID-19 infection[J]. Frontiers in Immunology, 2020, 11: 1736. doi:10.3389/fimmu.2020.01736


15

UCHIDE N, OHYAMA K, BESSHO T, et al. Effect of antioxidants on apoptosis induced by influenza virus infection: inhibition of viral gene replication and transcription with pyrrolidine dithiocarbamate [J]. Antiviral Research, 2002, 56(3): 207-217. doi:10.1016/S0166-3542(02)00109-2


16

TE VELTHUIS A J W, VAN DEN WORM S H E, SIMS A C, et al. Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture [J]. PLoS Pathogens, 2010, 6(11): e1001176. doi:10.1371/journal.ppat.1001176


17

IBS K H, RINK L. Zinc-altered immune function[J]. Journal of Nutrition, 2003, 133: 1452S-1456S. doi:10.1093/jn/133.5.1452S


18

WESSELS I, PUPKE J T, VON TROTHA K, et al. Zinc supplementation ameliorates lung injury by reducing neutrophil recruitment and activity[J]. Thorax, 2020, 75(3): 253-261. doi:10.1136/thoraxjnl-2019-213357


19

WEN W, SU W, TANG H, et al. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing[J]. Cell Discovery, 2020, 6: 31.


20

TELFORD W G, FRAKER P J. Preferential induction of apoptosis in mouse CD4+ CD8+ alpha beta TCRloCD3 epsilon lo thymocytes by zinc[J]. Journal of Cellular Physiology, 1995, 164(2): 259-270. doi:10.1002/jcp.1041640206


21

SAZAWAL S, JALLA S, MAZUMDER S, et al. Effect of zinc supplementation on cell-mediated immunity and lymphocyte subsets in preschool children[J]. Indian Pediatrics, 1997, 34 (7): 589-597.


22

MCGONAGLE D, SHARIF K, O′REGAN A, et al. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease [J]. Autoimmunity Reviews, 2020, 19(6): 102537. doi:10.1016/j.autrev.2020.102537


23

MOCCHEGIANI E, COSTARELLI L, GIACCONI R, et al. Zincbinding proteins (metallothionein and alpha-2 macroglobulin) and immunosenescence[J]. Experimental Gerontology, 2006, 41(11): 1094-1107. doi:10.1016/j.exger.2006.08.010


24

LIU M J, BAO S Y, NAPOLITANO J R, et al. Zinc regulates the acute phase response and serum amyloid a production in response to sepsis through JAK-STAT3 signaling [J]. PLoS One, 2014, 9(4): e94934. doi:10.1371/journal.pone.0094934


25

GOUDA A S, MÉGARBANE B. Snake venom-derived bradykinin-potentiating peptides: a promising therapy for COVID-19? [J]. Drug Development Research, 2021, 82(1): 38-48. doi:10.1002/ddr.21732


26

CASTRO L, FREEMAN B A. Reactive oxygen species in human health and disease [J]. Nutrition, 2001, 17 (2): 161-165. doi:10.1016/S0899-9007(00)00570-0


27

PRASAD A S, BECK F W J, BAO B, et al. Zinc supplementation decreases incidence of infections in the elderly: effect of zinc on generation of cytokines and oxidative stress[J]. The American Journal of Clinical Nutrition, 2007, 85 (3): 837-844. doi:10.1093/ajcn/85.3.837


28

MEHTA P, MCAULEY D F, BROWN M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression [J]. The Lancet, 2020, 395(10229): 1033-1034. doi:10.1016/S0140-6736(20)30628-0


29

CHEN G, WU D, GUO W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019[J]. The Journal of Clinical Investigation, 2020, 130 (5): 2620-2629. doi:10.1172/JCI137244


30

PRASAD A S, BAO B, BECK F W, et al. Antioxidant effect of zinc in humans [J]. Free Radical Biology and Medicine, 2004, 37(8): 1182-1190. doi:10.1016/j.freeradbiomed.2004.07.007


31

PRASAD A S, BAO B, BECK F W, et al. Zinc enhances the expression of interleukin-2 and interleukin-2 receptors in HUT- 78 cells by way of NF-κB activation [J]. The Journal of Laboratory and Clinical Medicine, 2002, 140(4): 272-289. doi:10.1067/mlc.2002.127908


32

PRASAD A S, BAO B, BECK F W, et al. Zinc activates NFkappaB in HUT-78 cells [J]. The Journal of Laboratory and Clinical Medicine, 2001, 138(4): 250-256. doi:10.1067/mlc.2001.118108


33

SONG H Y, ROTHE M, GOEDDEL D V. The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation[J]. Proceedings of the National Academy of Sciences, 1996, 93(13): 6721-6725. doi:10.1073/pnas.93.13.6721


34

AL SULAIMAN K, ALJUHANI O, AL SHAYA A I, et al. Evaluation of zincsulfate as anadjunctive therapy in COVID-19 critically ill patients: a two center propensity-score matched study[J]. Critical Care, 2021, 25(1): 363. doi:10.1186/s13054-021-03785-1


35

FINZI E. Treatment of SARS-CoV-2 with high dose oral zinc salts: a report on four patients [J]. International Journal of Infectious Diseases, 2020, 99: 307-309. doi:10.1016/j.ijid.2020.06.006


36

PAL A, SQUITTI R, PICOZZA M, et al. Zinc and COVID- 19: basis of current clinical trials [J]. Biological Trace Element Research, 2021, 199(8): 2882-2892. doi:10.1007/s12011-020-02437-9


37

THOMAS S, PATEL D, BITTEL B, et al. Effect of high-dose zinc and ascorbic acid supplementation vs usual care on symptom length and reduction among ambulatory patients with SARS-CoV-2 infection: the COVID A to Z randomized clinical trial[J]. JAMA Netw Open, 2021, 4(2): e210369. doi:10.1001/jamanetworkopen.2021.0369


38

SHITTU M O, AFOLAMI O I. Improving the efficacy of chloroquine and hydroxychloroquine against SARS-CoV-2 may require zinc additives-a better synergy for future COVID-19 clinical trials[J]. Le Infezioni in Medicina, 2020, 28(2): 192-197.


39

MCCULLOUGH P A, KELLY R J, RUOCCO G, et al. Pathophysiological basis and rationale for early outpatient treatment of SARS-CoV-2 (COVID-19) infection [J]. The American Journal of Medicine, 2021, 134(1): 16-22. doi:10.1016/j.amjmed.2020.07.003


40

ABD-ELSALAM S, SOLIMAN S, ESMAIL E S, et al. Do zinc supplements enhancethe clinical efficacy of hydroxychloroquine?: a randomized, multicenter trial [J]. Biological Trace Element Research, 2021, 199(10): 3642-3646. doi:10.1007/s12011-020-02512-1


41

CARLUCCI P M, AHUJA T, PETRILLI C, et al. Hydroxychloroquine and azithromycin plus zinc vs hydroxychloroquine and azithromycin alone: outcomes in hospitalized COVID-19 patients [J/OL]. medRxiv, 2020, [2022-09-25]. DOI: 10.1101/2020.05.02.20080036.


42

RIED K, BINJEMAIN T, SALI A. Therapies to prevent progression of COVID-19, including hydroxychloroquine, azithromycin, zinc, and vitamin D3 with or without intravenous vitamin C: an international, multicenter, randomized trial[J]. Cureus, 2021, 13(11): e19902.


43

YAO J S, PAGUIO J A, DEE E C, et al. The minimal effect of zinc on the survival of hospitalized patients with COVID-19: an observational study[J]. Chest, 2021, 159(1): 108-111. doi:10.1016/j.chest.2020.06.082


44

ALEXANDER J, TINKOV A, STRAND T A, et al. Early nutritional interventions with zinc, selenium and vitamin D for raising anti-viral resistance against progressive COVID-19[J]. Nutrients, 2020, 12(8): 2358. doi:10.3390/nu12082358


45

KARIM M M, SULTANA S, SULTANA R, et al. Possible benefits of zinc supplement in CVD and COVID-19 comorbidity [J]. Journal of Infection and Public Health, 2021, 14(11): 1686-1692. doi:10.1016/j.jiph.2021.09.022


46

张金尧, 汪洪. 锌肥施用与人体锌素营养健康[J]. 肥料与健康, 2020, 47(1): 11-16.


扫一扫关注
肥料与健康
微信公众号